
AD 751 555

OPTIMUM ESTIMATION OF A DELAY

VECTOR CAUSED BY A RANDOM FIELD
PROPAGATING ACROSS AN ARRAY OF
NOISY SENSORS

William R. Hahn

Naval Ordnance Laboratory
White Oak, MarylandS~16 June 1972

*""1

I

DISTRIBUTED BY:

Mcina! Technical Infoapa Seruke
lJ. S. D]EPPtRTMENT OF CMhMERCE
5285 Port Royal Road, Springfiekt Va. 22151



NOLTFL 72-120

OPTIMUM ESTIMATIOIl OF A DELAY VECTOR
CAUSED BY A RANDOM FIELD' PROPAGATING
ACROSS AN ARRAY OF NOISY SENSOR3

By
W. R. Hahn

16 JUNE 07!2

NAVAL ORDNANCE LABORATORY, WHITE OAK, SILVER SPRING, MARYLAND
I,

Nl\ \IC)PI'L f [C NICAL

APPROVED FOR PUBLIC RELEASE;
"DISTRIBUTION UNLIMITED

0
L.



UNCLASSIFIED U.S. NAVAL ORDNANCE LABORATORYK
WHITE OAK

SILVER SPRING, MARYLAND 20910

-To all holders ofTR2-0'c

OPTIMUM ESTIMATION OF A DELAY VECTOR CAUSED BY A 1 Dec 1972
RANDOM FIELD PROPAGAIIING ACROSS AN ARRAY OF NOISY

ApproveSDy &mrmande r, U.S. NOL 1Vig.s

By direction

This publication is changed as follows:

1. Change equation (2.1) to read:
X. (W T ~t expi-jkw tldt.

2. In equation(2.9)change 6 , T to .

3. fn equation (2.1O)change _T 2  to T
27r

4. Change equation (2.42) to read

D E D, D, ... P

5. In the first two lines of equation (3.20) change

to once on each line.

2i
6. In the first line of equation (3.22) change 2 Gto

1 1
7. In equations (4.10) and (4.11) change tov- to .

TT

9. In equation (4.12) cag oI adchange 1 to 1
M2 T

10. In eauation (4.15) change 1. to 1 >
T T

11. In equation (4.18) delete T in two places.

12. In equaý-ion (A 14) change 0 to 1.

13. In line 5 of page 65 change A -B tof B~1
B A 1 .

Insert this change sheet between the cover and the title page c:,f your ctupy.
Write on the cov'er "Change 1 inserted"

( UNCLASSIFIED

NATIONAL TECH.NCAL
INFOR~MATION SER VICE

U 4- De potf e4.~



•-•'.'• -• •.-• ". • ,•- ••-• -:°•....• •,*• t 1 • •_ • •- ;• . • • -• -=• .•.• •....., ......... - .- .- .... •

UNCLASSIFIED
Securitv Classificatlion

DOCUMENT CONTROL DATA R & D
,Securitv clia,-Illeaton ot titlo. body of abstrart and indexln j annotatl,-; rnu ma be entered when the overtall 'port Is claeJslied)

I, ORIGINATING ACTI*ITY (C•JWt'Steeuthoe0r) . REPORT SECURITY CLASSIFICATION

Naval Ordnance Laboratory UNCLASSIFIEDS R E P O R IT 
SE'R I Y .TSIT 

L EI 
N

White Oak, Silver Spring, Maryland 20910 zb. GROUP

• 
3 .R rIPO "T TIT LEI

Optimum Estimation of a Delay Vector Caused by a Random Field Propagating Across
an Array of Noisy Sensors

4. OESCRIPTIVE NOTES (Type of teport and Inctuelve dates)

•: ~ S. AU THORIS) (F irmsl nme, m iddlie inhi til .le afr name) 

••

William R. Hahn -;;g

S. NEPORT DATE 1,A. TOTAL NO. OF PAGES 7b. NO. OF RES I
16 June 1972 76I 13

041. CONTRACT OR GRANT NO. Ca. ORIGINATOR REPORT NUMSERISI

b. PROiECT NO. NOLTR 72-120 1-A
C. 9b. OTHER REPORT NOIS) (Any other numbers that May be easettged

d. ___

10. OISTRIUTION STATEMENT _

Approved for public release; distribution unlimited

II. SUPPLEMENTARY NOTES 1I2. SPONSORING MILITARY ACTIVITY -

I
The problem of optimally processing multiple sensor data to determine the set
of time delays generated by the propagation across an array of the wave fronts
from a distant wide-band Gaussian noise source is investigated. It is assumed
that the amplitude gradient across the array of the noise field is negligible,
that the array outputs are corrupted by additive wide-band Gaussian independent
sensor noises, and that the observation time is long. The Fisher Information
Matrix is determined, and then used to show that the maximum likelihood estimate
is asymptotically efficient (as theory dictates it should be). It is also shown
that filtered correlator systems can provide asymptotically efficient estimates. .
Finally, the effects of suboptimal filtering of the inputs to a correlator system
are investigated for the case when the signal and additive noise spectra are all I
band limited and have constant slopes of 0, -3, or -6 dB/octave.

FORM

DDW.o.1473 (PAGE 1)
s o.q) UNCLASSIFIED

S/N 0101807.6601 wSecurity Classification



4, 7A t=- - iV-4%

U&AS IE

Passive Multidimensional Sonar Localization

Passive Sonar Signal Processing4

Optimum Filtering and Estimation

Iraw

DD ,,,,47 (AC) 
NCASIFE

(P AGE' 2)s 
c rty-46fi a n-



_ _ I

NOLTR 72-120

i4
OPTIMUM ESTIMATION OF A DELAY VECTOR CAUSED BY

A RANDOM-FIELD PROPAGATING ACROSS All ARRAY OF NOISY SENSORS

Prepared by:
W•. R. Hahn

ABSTRACT: The problem of optimally processing multiple sensor data to determine the
set of time delays generated by the propagation across an array of the wave fronts I
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CHAPTER1

INTRODUCTION

In many physical problems of interest, with sonar, radar,

and :-eismology as examples, the time records of the outputs

of an array ,,f sensors are observed over some time interval

used tn estimate the position of a distant noise source.

"ypically, the outputs (i.e., time records) of the sensors

consist of amplitude scaled and delayed replicas of the

waveform from the distant source, corrupted by additive

noises, usually !ocal in origin. When the amplitude gradient

cf the noise from the distant source is negligible over the

array, essentially all of the geometric information, e.g.,

range and bearing, is encoded in the set of time delays

associated with the propagation across the array of the signal

wavefronts from the distant source, This thesis treats the

topics of ;'11tering and signal processing to optimize the

eStimation of the time delays,

- The distarit noise source and the additive corrupting

sensor noises are all assumed to be independent stationary

Gaussian random processes. The time records to be pro-

cessed are long compared to the signal and noise co.rrelaticn

'times and -also to- the t-im& needed- for a signal -wavefront

to-•opagate a~ross the ari'ay. These -sMa3•tions make an

anayiis based on a Vourier-representat•on of the ti1e-e

rpeords partiularly onv~nient.
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The Cram~r.-Rao matrix bound (ClMB) for the vector delay

estimate is developed in Chapter II, and it is used as a

benchmark, relative to which the efficacies of two estimation

schemes are measured. These schemes are the maximum likeli-

hood precezor -tn Chapter III, and a possibly suboptimal

multiple correl.ator processor in Chapter IV. Theory dictates

that the maximum likelihood processor should achieve the I

matrix bound, and this is shown. If the number of sensors is

two (2) or three (3), then it is shown that the multiple

correlator processor with optimally filtered inputs also

achieves the matrix bound. The optimal filters are discussed

in Chapter IV. Numerical results showing the effects of
suboptimal filtering are presented in Chapter V for the

specific case where the signal and nuise spectra are band-

limited with spectral slopes of 0, -3, or -6 dB/octave.

Although there have been many applications of the

Cram6r-Rao estimation theory to communication theory, they

have generally been to problems of the known signal in

Gaussian noise type. Among the investigators who have applied

the Cram~r-Rao estimation theory to problems in which the

signals and noises all are random are Levin Ell, Harger £2),

and Ma;cDonald and Schultheiss [3]. Levin investigated random

process power spectrum parameter estimation. Harger treated

the problem of optimally processing data of unknown focus

in electro-optical systems, MacDonald and Schultheiss

considered the problem of optimally estimating the bearing

2
"" • •
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fr.m a sonar array to a distant noise source. In [3] the

authors assume that the signal wavefronts at the array are

planar, and the problem is essentially that of estimating

a scalar. This thesis generalizes the problem treated by

MacDonald and Schultheiss to t~ie extent that the signal

wavefronts across the array are assumed to have a curvature,

and it is desired to determine this curvature, and hence

the rest of the geometry, by measuring the vector of time

delays associated with the propagation of the curved wave-

fronts across the array of sensors. This passive multi-

dimensional localization problem appears not yet to have

been treated in the literature.

The following notation is used in this thesis. If A

is a matrix, then A 1 is its inverse, A* is its complex

conjugate, AT is its transpose, tr A is its trace, and det A

is its determinant. If matrices A and B are positive

definite, then A > B(A > B) denotes that the difference A-B

is positive definite (nonnegative definite). A square matrix

whose elements off the main diagonal are all zero may be

written as diag(al, a2 , ... , an), where ai is the i-th

diagonal element. Vectors are column vectors unless other-

wise specified. 1 denotes a vector with every element a

one (1). 0 is a matrix of zeros, and I is the identity

matrix. < • > denotes the expectation operator, and-grad f

is the gradient of the scalar f. The gradient of a vector

is the matrix in which the i-th row is the gradient of the

4 3

._ J i..........
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i-th component of the vector. The Kronecker delta is denoted

j in the usual fashion as 6i.• If z is a complex number its

real and imaginary parts are denoted by Re z and Im z,

respectively.

The following conventions regarding integration limits

are observed in this thesis. Integrals of the form

Of dx are written as fr dx. Integrals of the form

"fT/2 f dt are written as 'T f dt. The quantity wN is defined

-T/2
in Chapter II. Integrals of the form f'N f dw are written

as fB f dw. N

The symbols MLE, FIM, CRMB, and HOT are abbreviations for

Maximum Likelihood Estimate, Fisher lnformation Matrix, I
Cram6r-Rao Matrix Bound, and Higer Order Terms (as in series

expansions), respectively. Appendix A is a brief introduction I
to the significance of the FIM and the CRMB.

Appendix B is an introduction to complex Gaussi-n

random vectors, in the particular sense of Goodmann [1].

These complex Gaussian random vectors are pertinent to

the study of the properties of real stationary Gaussian

vector processes with long observation times.

_4
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CHAPTER II

THE LIKELIHOOD FUNCTION AND TEE

FISHER INFORMATION MATRIX

A. BASIC ASSUMPTIONS

In this chapter the likelihood function, L(D), and the

Fisher Information Matrix (FIM) are derived. The vector

argument, D, of the likelihood function is the vector of

delays to be measured. The following Assumptions are made:

1. The random signal and each of the additive sensor

noises are all stationary zero-mean Gaussian random processes.

2. The stationary zero-mean Gaussian random processes

of Assumption 1 are all independent.

3. The observation interval, T, is large compared

to the correlation times of all the stationary zero-mean

Gaussian random processes. It is also large compared to--.

the time needed for the signal wavefronts to transverse

the array.

5 ,
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B. THE LIKELIHOOD FUNCTION, L(D)

Each of the M sensors of the M-element array is observed

for a duration of T seconds over the time interval
T T
T< t <t + The output of the i-th sensor is xi(t).

The i-th time-record is represented by Fourier coefficients,

Xi(Wk) = fT xi(t) exp(-Jkwotldt, (2.1)

where wo 27r/T, and = kwo. If only frequencies up to

Nwo are to be processed, the set of M time records can be

represented by MN complex Fourier coefficiencs. These MN

coefficients can be treated as a single entity by defining

a data vector X:

XT = (2(1) 2( ),XM(wl),Xl(w 2 ),...,XM(wN)) (2.2)

By Assumption 1, each of the components of the data vector

is a zero-mean complex Gaussian random variable. Let the

covariance matrix, R, be defined by

R B < X*XT >. (2.3)

P-• The elements of R are given by

X*(Wm)Xq (n) =fT dt fT du exp{J(wmt-wnu)l < xp~ tXq(U).>.

(2.4)

It is assumed that the time record of the output of

the p-th sensor is

Xt> = s(t-Dp) + np(t), (2.5)

6
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where s(t) is the random signal waveform, D is the signal

p

delay at the p-th sensor relative to the delay at an arbi-

trary reference point, and n (t) is the independent

additive sensor noise. Let R (T) and R (T) denote the

signal and noise auto correlation functions, respectively.

By Assumption 2 the expectation on the right side of

Equation 2.4 is

< xp (t)xq(u) > = Rs (t-u+D -Dp) + pqR p(t-u). (2.6)

The autocorrelations are related to the spectral density

functions S(M) and Np (w) by

R( - f S(w) exptjw¶}dw (2.7)

and

Rp(T) = 12 N Wp) exp{JwTldw . (2.8)

Inserting Equations 2.6, 2.7, and 2.8 into Equation 2.4
and integrating with respect to t and u,

ST2
< X(Wm)Xq (W) > = f f dw (S(w)+N (W)) exp{Jw(Dq-Dp)1

•sin(w+2wm/T)T/2 sin(w+2rn/T)T/2]
* (w+2wm/T)T/2 (w+2wrnT)T/2 "

(2.9)
By assumption 3, the signal and noise correlation times

as well as Dq-D are all small compared to T. The sinc

functions [5] in Equation 2.9 are orthogonal, and since all

the functions of w inside the integral in Equation 2.9

vary slowly compared to the sinc functions. for practical
purposes
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1<X (W )Xq . ) > = T(S(O )+6 N (Wn)) exp{jw (D-Dp)]

(2.10)

The real and imaginary parts of X, say XRE and XIM,

respectively, are each zero-mean Gaussian random vectors.
If < XREX > < XMX > and if < XR' > < XT >

HEREIMIM> XRE IM IM4RE

then X is a complex Gaussian random vector, in the sense of

Appendix B. This is true (asymptotically in T). Consider

< Re Xp(wm ) Re Xq(Oj ) > - < IM Xp(Wm ) IM Xq(Wn)
p m q n pm q n

=f dt fT du < x p(t)Xq (u) > cos(%t+wnt)

"= f I dw (S(w)+N (W)6p) exp{Jw(Dp-Dq)}
p pq p q

"f f dt f, du exp{Jw(t-u)) cos(w t+wnu)

f f dw (S(M) +N (0)6p) exp{jw(D -Dq)}
2.p pq Pq

T2 [sin(w+wm)T/ 2  sinjm-•n)T/2T t'~ww
m n

sin(w-w )T/2 sin(w+w )T/2 -i
+T7 • n)Ti2 _I " (2.11)

m n_

Again the sinc functions on the right side of the last

part of Equation 2.11 are orthogonal. Since the integers m

and n are positive only, the right side of Equation 2.11

is essentially zero. Thus the real and imaginary parts of

the data vector X have the same covariance matrix. Almost
T < T > |

identical arguments show that < XIMX RE > XREXIM

It follows that the vector X is a complex Gaussian random

vector (see Appendix B) and the density function for the

vector is
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p(X)d exp{XTR- X . (2.12)

Through the remainder of this thesis the asymptotic

nature of the results derived, particularly Equation 2.12,

will be assumed, and only occasionally emphasized when it

seems appropriate. Equations such as 2.12 will appear

without apology.

Equation 2.10 shows that the Fourier coefficients

•j for different frequencies are uncorrelated. It is there-

fore convenient to define the following vectors and matrices:

X(k) = (Xl(Wk), X2 (w9, ... , XM(Tk)) (2.13)

V(k) = (eJwkDl eJwkD2 eJwkDM)T (2.14)

N(k) diag(Nl(wk), N2 (wR), ... , NM(Wk)) (2.15)

R(k) = N(k) + S(wk) V*(k) vT(k) (2.16)

Using Equations 2.13 through 2.16 the density function

can be written as

N
Sp(X) = I (i det R(k))- exp{-XT(k)R-l(k)X*(k)}

k=l
(2.17)N ]iN

[7 HN det R(k)) 1 exp{- xT(k)R-l(k)X*(k)}.

k=l k=-

An application of the "matrix inversion lemma" [6, p. 13]

shows that

R-I(k) = Nl(k) - G(k)N-l(k)V*(k)VT(k)N-l(k), (2.18)

where G(k) is defined by
M

G(k) "rl + I S(W )N.1(W 1 (2.19)
k=l

9
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The vector V(k) is conventionally called the steering

vector.

In the remainder of the text it will be convenient .

to use the following simplified notation: The function G(k)

may be written as G(k), ci, G(kwo), or G(wk), or G(w) if

W = kwo is understood, or simply as G with the argument0i
suppressed if the argument is known. This notation will

be used for all of the frequency dependent scalars, vectors,

and matrices. In addition the set

B+ = (iii an integer, 1 < i < N)

is defined in order ",hat summations over thle range of the

J Fourier frequencies, , can be simply written as

1B+3 whether the frequency arguments are or are not sup-

pressed. This allows summations of the form to to
be written as 1. and always understood to be an array

SUM.

The signal delay vector D is defined by

D= (DI, D2 1 ... , DM)T . (2.20)

The vector D is the vector argument of the like31hood

function, L(D). From Equation 2.17,

"L(D) = [LMN H det R]- 1 exp{- I XTR-lX*} (2.21)"• B+ B+

It is convenient at this point to examine det R(k), and.

in particular, to show that it is not a function of D.

Let u = exp{Jwk}. Then

10>
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S + N1  su(D2-D1i) su(D4-DI)

Su(DI-D2 ) S + N2  ... su(DM-D2) .a22

R(k) =(2.22),

*S " " -"

u(DI-DM) Su(D2-DM) ... S+NM

From Equation 2.22, every element of the i-th column of

R(k) has the factor u_ and every element of the i-th

row has the factor u . Thus if R(kli) is the R(k) matrix

with Di set to zero,

det R(R) = (u-Di)M(uDi)M det R(kli). (2.23)

In view of Equation 2.23 and the definition of R(kji),

det R(k) is not a function of Di. Further,

det R(k) = det(N(k) + S(k)lT). (2.24)

L :=-
-t

:-

11 1•
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C. THE FISHER INFORMATION MATRIX

The CRMB for unbiased estimators of the vector

argument Y i the inverse of the FIM, denoted by (FIM),

where

(FIM) = - < grad(grad in L(Y))T > (2.25)

In Equation 2.25 L(Y) is the likelihood function for Y,

and the gradients are taken with respect to the components

of Y. The matrix grad(grad in L(Y))T is a matrix of

second partial derivatives. From Equations 2.18, 2.19,

2.21, and 2.23,

grad(grad L(Y)) grad(grad XT)TlX*)T

S~B+
S~= B) G grad(grad xTN-Iv*vTN-Ix)T.

(2.26)

Let a and b denote arbitrary elements of Y.

The corresponding element of the FIM is determinid by

SxTN-I•(•v'T) -1X
-< ra b in L(Y) > = - ; G < XTNl±(-Ab-VV )NlX >

(2.27)

The k, m-th element of the matrix VVT is exp{Jw(Dm-Dk)}.
mk)

Let

5T

VVT = (exp{Jw(Dm-Dk)J), (2.28)

12
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so that

SD T expjw(d.-D

(Jw) 2 (-L(Dm-Dk)-&*(Dm-Dk) exp{Jw(D.-Dk)J)

+ (Jw)(- -- (Dm-Dk) exp{jw(Dm-Dk))

= (JW) 2 A + (Jw)B , (2.29)

where the matrix A contains all and only those terms which

involve differentiating the exponential twice.

Define A and B by

A = N- A•-1 (2.30)

and

B= N-1BN-1 (2.31)

In view of the matrix identity XTQx* = tr X XTQ. the

expectation in Equation 2.27 is

13
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< TN- a a- vV T)N-1 X >

=< tr XX((Jw) A + (Jw)B) >

= tr{R[Cj=) 2 A + (Jw)B))} (2-32)
tr{N+SVVT oB) 2  2J2)

T)( A + (Jw)B)1*

The matrices A and B have only zeros for main

diagonal elements. Thus A and B have only zeros for

main diagonal elements, since N- 1 is diagonal. Again,

the main diagonal elements of NA and NB are all zeros.

Thus tr(NA) = tr(NB) = 0, and

15 a •'•"

a trfSv*vT((w) 2 A + (J)B)}. (2.33)

The k-th main diagonal element of the matrix

vv A v*vT[D(-L(--(k-Din)) 1 exp{Jw(Dk-Dm)l (2.34)

is

= " ) ( raD ] exp{ J1 (Dk-q)}
kk k Daaab k NkN (k

1[_(-L(DkD m

= B D m))k " (2.35)

It follows that

tr(V vTB) = g NE-[((Dk Dm))]

km
=0, (2.36)

14
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since

=-k -¾.(Dj D) 3 2.7)

3a 3b k 3a b 1 m

Thus the only part of the expectation in the right side of

Eqtation2-.27 1,,hat is not zero is the term involv~ing

The i-th main diagonal term of the mnatrix V V A is

D(D --D ) 3(Di-Dm) a
aa I (2.38)

m

Using Equations 2.33, 2.36, and 2.38 In Equation 2.27,

the typical element of the FIM becomes

in L(Y)) > w2G Vj S B(D k-D ) 3(D k-DM)
aa aab B+ N kN Da 3b .

(2.39)

Since T is 'Large and the spectra do not~ vary appreciably

jover intervals of width wo, Equation 2.39 can be written as

Da 3b B :a(D1L (2.+0

R . a (D k- D ) _ _ _ _ _ _2 ,4

kmm
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For the likelihood function L(Y), the elemehts of the

FIM as developed in Equation 2.39 and 2.40 do not depend

on regarding a and b as elements of the delay vector

D. The Equations 2.39 and 2.40 are correct so long as

•2- a and b are parameters, for example, range or bearing,

which affect the likelihood function only in that a and b I
are arguments of the delays.

Specializing to the case where the gradient is taken

with respect to the components of D, the MxM matrix of

second partial derivatives ib

- < grad(grad In L(D))T > =

X2w2  S2  N N 1 
1 1T1Nl (2.41)

+ s

This is not the FIM, for it does not have rank M.

EThis is due to the fact that the delays appear in the

expression for L(D) only in difference pairs. One of

the delays Di is arbitrary. Arbitrarily set D1  0.

Redefine D by

2 D (D2 , D3, ... , DM) . (2,42)

The FIM pertinent to the estimation of the M-1 vector D

defined in Equation 2.42 is obtained from Equation 2.41:

(FIM) =-< grad(grad In L(D))T > t

22w2 -1 N-) -N 1 1 2TN-J) C2.43)
i + B N P --

16
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In Equation 2.43 N- 2 N and

P dig( 2 ~ * M)ad1'

now an M-I vector. Or equivalently, the FIM is the M-J 4

by M-I lower right partition of the matrix an the right

side of Equation 2.40,

An unbiased estimate Y of the vector Y is efficient

if the covariance matrix of Y-Y is the CRMB. A necessary

and sufficient condition for the existence of an efficient

estimate is that

. grad in L(Y) M(Y)(Y-Y), (2.44)

where M(Y) is a matrix which depends only on Y and not

on the observations. (See Appendix A.) For the problem

treated in this paper

grad in (L(D) = grad in XTlR-1X (2.45) 1

Every term on the right side of Equation 2.45 nas the

observations, that is, the Fourier coefficients, as factors.

Thus in general, efficient estimates do not exist.

However, it is shown in the next two chapters that under

certain conditions correlators and other square-law

processing schemes are asymptotically ecriu'int, in the'

limit of large T.

17
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D. THE M=2 AND M=3 CASES

If the number of sensors is M = 2, the matrix bound

reduces to a scalar bound. The scalar delay to be

estimated is D, the delay from the first to the second

A-

sensors. The variance of any unibiased estimate, D,

of D satisfies

S2 /NIN 2 -N6I

var(D) > (2.46
1 2

If the number of sensors is M = 3. and the vector to
ST )T

be estimated is defined as Y = (Y,Y2)T = (D,D3D2 )

(FIM) = K12 K1 3 1 ] (2.47)271)= - K 13 K 23 + K 13-

where

S I
Kj = JB2 dw (2.48)

k- k

It is shown in Chapter IV that for M 3 a

processing scheme using three properly filtered correlators

achieves the matrix bound.

-1
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CHAPTER III

THE MAXIMUM LIKELIHOOD ESTIMATE

A. THE ASYMPTOTIC NATURE OF THE MLE

When the MLE Is based on a large number of independent

samples it is censistent, asymptotically normal, and

asmptotically efficient [7]. Since this thesis treats the

case in which the observation time T is large and the

correlation times are small, there should be, in some sense,

a large number of independent samples. It ohould, therefore,

be possible to examine the errors in the MLE and show that

the covariance matrix of the errors is in fact the CRMB.

In this chapter this is demonstrated. Since the results

developed in this chapter are independent of the true

delays, the true delays are assumed to be all equal to zero.

Without loss of generality, the signal delay at the first

sensor is taken to be zero, and the delay set to be

measured is the set of signal delays from the first to the

remaining M-1 sensors.

The MLE for the delay vector, D, satisfies

grad in L(D) = 0, where the gradient is taken with respect

to the M-1 unknown delays. The vector D so determined is

the vector of measurement errors. The vector of delay

measurement errors is

DT -CD23 D3 .9 DM) (3

LI9
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and the error in the steering vector is

VT = (1, exp{JwD2 }, ... , exp{JwDM}). (3.2)

The error vectors D and V satisfy

0 = grad in L(D)

= grad I xTR-ilX*

grad I GXTN-IV*VTN-'X*

B+

= grad I G 1N-N exp{Jw(DOn-Di)} (3.3)SB+ in N•Nn

= grad 1 G 11 ýL-(l+Jw(Dn-Di+ )(j0) 2(D-D +HOT)

B+ ih Ni h

grad(A + BD + ½f DTCD + HOT).

In Equation 3.3, A + BTD + if DTCD + HOT is the series

expansion, in terms of the vector D. for

a G1 (Xa /NiNn)exp{j (Dn.-Di).
B+ in

Since the error vector, D, is assumed to be small, Equation

3.3 leads to 0 = B + CD + HOT, or to first order,

D = -C0IB. The remainder of this chapter Justifies the

following (asymptotic) Equations:

20
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1) < BT > 0 (3.4)
2) < BB >= (FIM) (3.5)

3) C = < C > =-(FIM) (3.6)

4) < D > = 0 (3.7)

5) < DDT >= (CRMB) (3.8)

• .

IV

21
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IAl
B. THE VECTOR B

From Equation 33, 3i

BD H ffGB+ in

X x* X

B+ nn 1in n

1-3INT (39)

B+

where X is the X vector with the first component

partitioned away. Thus

SJw• 1-T•-[XXT - X XpNp. (3.10)
B+

Since, at each frequency,

R < XxT >

=N S s T

=<XX'T >, (3.11)

it follows that < B > = 0.

In examining the terms of < BTB* > let

Xi Ic
u. (3.12)

4i k

Then Rik
~U (U > ik

ii

= U< > • (3.13)1

- 22
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If w and wq are distinct frequencies,

p q U(, ,, )

< (u((Wp)k ()P)
k < (U(p)U(wp))(un < (Un(wq)-nq) >

0, (314)

since the Fourier coefficients at different frequencies are

independent. The element in the (p-l)-th row and

(q-l)-th column of, < BBT > is, from Equations 3.9, 3.12,

and 3.14,

BTB* > 22 ** >p-lq-I G <( p-Up)( -U)B+ (3.15)
w2 22 <u uU+p-UpU*-UpU >.

B+ pq p q pq pqB+

< U =* > ~i k p q
p q ik NiNkNpNq

- RkiRpq+RpiRkq(

N NN kNp(1

ik i k pq

since < XiXq > = < XkXp > = 0.

Since R = N + S 1 _ is symmetric,

< u uq > = < u q > (3.17)

Further, X [
p< UpUq ik NINkN N

R 21R ak + RPk Rgi

ik NiNkNpNq

< uu* > (3.18)p q

23
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L Combining the last four Equations, if follows that

<• B TB" > 2w2 G2 [Rik pq r pi qk
<BTB >p-.l,q-i = I N NNpN" (3.19)

•- 'B+ ik

The double sum in Equation 3.19 is easily evaluated since

Ri k k

ik i kNp Nq p q i

q N Ni
& kk

N= (- I )(1 + S , (3.20)

an'4  Nkp pq (

Rp =q 1 R i)( R Rqk)N kKN, Ni Nk
i NNpq p q Ni k N

2~

1
•" ~= 1-

NN (3.21)Np q

Thus Equation 3.19 becomes

.•_~ ~ S2 8 ~-

-B+ ( L I97-(' + R7.
p-lsq-1 i(1+1N N

2 S2 6pqNp

B+ 2w2  + 2  (3.22)

24
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Examining the elements of <B B > as given by

Equation 3.22 shows that < BTB > is the M-1 by M-1

lower right partition of the matrix

2F 2w2  S.s~)N 1-N-1 lliT N -1 (3.23)

But this lower right partition of F is the FIM for this

problem, as was shown in Chapter II.

This completes the proof of Equations 3.4 and 3.5.

WV-1

25
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C. THE C MATRIX

From Equation 3.3

XX
1 DTC 1(jw)2G iki

B+ ik

The terms Xi. are the elements of the sample

covariance matrix based on T seconds of data. These

sample covariance elements do not converge, even if T

is arbitrarily long E8]. However, if the spectra being

estimated are sufficiently smooth, the sample covariances

can be averaged with samples from nearby frequencies

to provide statistical convergence. By hypothesis, the

spectra in the problem being treated are sufficiently

smooth. The summation, , provides a smoothing over
B+

adjacent frequencies of the weighted spectral convariance

estimates. Thus it is assumed that C = C >, and any

statistical variations in CD are of second order relative

to the variations in B. From Equation 3.3,

X~TCD = FO ) (W) 2G XiXk, 22 (3.25)
G k Di Di k)

SB+ ik
The range of the indices i and k in the summations is

from 1 to M. D1 = 0. Using the argument preceding

Equation 3.25,

1 TC 1~T<>S21-ocD = C 1D T C > D

26

•: (3.26)

(jw-- G(11)2 k'(D-2 D Dik•: ui•

BL+ ik

26•
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But

RlkD2 Di Rik

N-Nk i N Nitic i i k

+ k

[1+ ~ jDTN 1D ,(3.27)

k LIk

where NI 1is the N matrix with the first row and column

partitioned away.- In simnilar manner

R Dk D • 1 1 D
N i±N-± P P p , (3.28)

Ik _

where R is the appropriately partitioned R matrix. Thus
P

C C >D = (J)GI(l + S ~)DTNýlD-DT N;fl

i Ii
- =DT{, (jw)2GE( S )N'S~ T;]D

(3.29) '1
It follows that 2

< C > s2= ( [a l_ 2(3l_1_).
SNB÷ 1(3.30)

In fact,

- < C > = < BTB* > = (FIM) , (3.31)

which demonstrates Equation 3.6.

271
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Do THE D VECTOR

Since the measurement errors are small, the D vector

is essentially determined by 0 T + CTD. Since

C < C C > with negligible error, and since < C > is

symmetric, it follows that, asymptotically,

'B (3.32) 71
< D > = - < C >-i < BT > 0 (333)

and the covariance matrix for D is

< D*DT > < C >-i < BTB* > < C >-

= C c >-1 (FIM) <C>>-I

= (FIM)- 1

. (CRMB) (3.34)

Thus the MLE for the delay vector is efficient.

:2 I10 is also unbiased. This demonstrates Equations 3.7

and 3.8.

28I
I
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Ii

CHAPTER IV

CORRELATOR DELAY MEASUREMENT SYSTEMS

In this chapter a delay measurement system using

correlator techniques is studied. The covariance matrix

for the delay e-' ates is derived. The use of filters

to optimize the system is studied. For the M = 2 and

M 3 cases, the correlator based maasurement system with

certain filters is shown to achieve the CRMB. A conjecture

is made regarding the optimum filters when M > 3. r

I

29
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A. CORRELATOR MEASUREMENT COVARIANCES

The output of an ideal correlator with T seconds

of integration, and with the i-th and J-th sensors for

inputs, is

zij(Tj. f= xi(t)xj(t - Tj) dt . (4.1)

By the assumptions in Chapter II, the additive sensor noises

are independent. It follows then, that

< z 1 (T3 ) >-- RS(Di - D1 - Tj) (4.2)

and that the peak of the function zi (T1 ) determines an

unbiased estimate for Di - D1 .

rLct x (t), x(t) and xk(t), x (t) be two pairs of

sensor outputs. These pairs are correlated to determine zijcrj)

and z (T). The time records xi(t) and x (t) are assumed to

be the outputs from two distinct sensors. The same applies

to xk(t) and xn(t). However, it is not assumed that all

four inputs are distinct. With the integers i, J, k, and n

fixed, it is convenient, for this section, to relabel

xi(t) as x1 (t), x1 (t) as x2 (t), xk(t) as x 3 (t), and x nt)

as x4 (t). Thus, the xl(t) of this section may or may not

be the xl(t) of Chapter II. And the xl(t) of this section

may be, in fact, the same as x 3 (t) or x 4 (t).
The correlators have as outputs z 1 2 (T2 ) and z3 4 (T 4 ).

Define Y1 2 (T2 ) and y3 4 (T 4 ) by:

30
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Y1 2 (T 2 ) Z 1 2 (T 2 ) - < z1 2 (T2 ) >

Y T344 ) = z 3 4 (T 4 ) - < z34(T4) > (4.3)

Let T2 and T be those values of T2 and T respectively,

at which the correlogram peaks are located. Let e 2 and e 4 .

be defined by:

e2 +2 D D1 D D2

e + T D D (4.4)

and let e 2 and e4̂ be, respectively, the values of e 2 and e4
A A

when T2 = T2 and T4 = T 4 . Then e2 and e4 are the

measurement errors. The correlator outputs are with

probability 1 everywhere differentiable functions of T2

and T4 . T2 and T4 are determined by:

d z A

Z2(T2) = 0 at T2
z(T a

2

ddT_ ZB4 (T 4 ) = 0 atT 4 =T T4  (41dT4344 4 4

Letting the derivatives be denoted by primes, and using

the definitions, Equations (4.5) become:

0= Rs(e2) + y'2(T2)

0 = Rs(e 4 ) + Y34 (T 4 ) (4.6)

31
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The errors are assumed small. Assuming that R (e)

is differentiable at e = 0, it has the series expansion

R(e)R(0) 1 R()e + HOT (4.7) 17Ree s e0 2 s

Using Equation 4.7 and neglecting the HOT, Equations 4.6

yield:

e2 = _ (R"(0))-I yI 2 (T2 )

e = - (R-(0) ) (4.8)

I 4)
whence

AA -t 2AA
< e 2e > = ) < YI2(T) Y;4(T4) > (4.9)

Next, the expectation on the right side of Equation 4.9

is evaluated. The evaluation is accomplished by using

Fourier coefficients and Fourier series. The coefficients

are as defined and used in Chapter II, and the summations

that follow are understood to range over the (positive and

negative) integers.

xl(t) = Xl(k) exp{jkwot} . (4.10)

x2 (t - T2 ) = X*(k) exp{-Jkw (t-T 2 )} • (4.11)

k

32
j

S.. .. . . ..- ~ - °- -



NOLTR 72-120

"y12(T2) = Tx(t)x 2 (t-T 2) dt- < x1 (t)x 2 (t-T 2) >

T
= t(i-k)})X exp(oT(2 }

ik

< x (t)x(t-T) >1 2

T 2 Z X(k)X2(k) exp{jkwoT2 }

k

- < xlWtx 2 (t-T 2  (4.12)

since

f dt exp{j( 0ot(i-k)} = T 6 ik• (4.13)

l2 (T2 ) = X2 Z JkwoXl(k)X2(k) exp{jkwoT2 }
k

d2

From Equation 4.14, <yl 2 tT 2 ) > = 0, since both terms on

the right side of Equation 4.14 are, after the expectation
is taken, equal to + R(1 -(-

1 2 2

An expression for Y3' 4 (T4 ) can be vwritten by replacing

1 and 2 where they occur in Equation h,.14 by 3 and 4,

respectively. Thus

33
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"Y 2(T2) (T4) >
1 2)3' 4)

low [(Jk)(Jwon) < X (k)X2(k)X3 (n)X4(n) >

Tkn

exp{Jwo(kT2 + nT4)}]

-Rs(D 1 -D2 -T 2)R (D 3 -D4 -T4)-

Sk)(Jh)[ < X.1(k)X 3 (n) > < X2(k)X*(n) >
kn

+ < XI(k)X*(n) > < X (n)X*(k) > ]

(4.15)

The last part of Equation 4.15 follows from the argument

made immediately after Equation 4.14.-i "
The Fourier coefficients at positive and negative

frequencies are related in such a way that

< X (k)X (n) > < X,(k)X (-n) >

< Xl(k)X*(k) > if n -(.k,

Thus.,

< yI 2 (T2 )Y3 4 (T 4 ) >

1T

"-< XIX* > < X-X2 > exp{Jnwo(T2 +T4 }] • (4.17)

34
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Now replace 1, 2, 3, and 4 everywhere in Equation 4.17

by h, i, k, and 1, respectivelv. Note that

< XhXi > - T(Nhshi + S exp{Jw(Di-Dh)})

= T(S + Nh6hi) exp{Jw(Di-Dh)} . (4.18)

Hence Equation 4.17 becomes

Yhi Ti)YkI(TI) > T2 2 (nWo)2

n A

•[(S + n 6 hk)(S + N isil exp{JnwoA}

-(S + N hshl)(S + Ni6ik) exp{JnwoB}],

(4.19)

where

"A =Ti -T Dh + Dk + Di - Dl, (4.20)

and

B=Ti +1T - Dh + D - Dk + D (4.21)

Next let Ti =Ti and T= T Then A and B become

A=ei -e 1  (4.22)

and
A A A

B = e + el , (4.23)

respectively. Neglecting the HOT in the errors, Equation

4.9 can be written as
A A -2

< eleI >=(R (0)) 1 !•wd 2 2 (424)
i s2 rT -" B

•f(S + Nh6 1hk)(S + N i6il)-(S + Nh6hl)(S+NiMJk)}l.

S~35 '
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The elements of the covariance matrix of the correlator

delay estimates are determined by Equation 4.24.
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B. FILTERS FOR CORRELATOR SYSTEMS (M=2 AND 3)

In this section the use of filters to optimize the ,

corelator delay measurements is studied. For the M = 2

and M = 3 cases the optimal filters are displayed. For

M > 3, the optimal filters are conjectured.

Consider first the M = 2 case. There is only one

delay to measure. Let it be D = D2 - D1 . The estimate
A

for D is denoted D. From Equation 4.24 and 2.46,

IX-

v2w B w2 [NIN2 + S(NI + N2 )] dw

f B w 2 S dw)2

B

-- ~ S d-
T B 1 + d. + (4.25)

N1  N2

If filters Fl(w) and F2 (w) are to be used on the outputs

of the sensors 1 and 2, respectively, the filters must

have identical phase responses. If they do not, then the

filtered signals will have different delays at different

frequencies, and this could bias the delay estimate.

Since the phase responses are identical, the filters may be

assumed to be identical filters. Let F = F1 =-F 2

The filtered'signal spectrum is S(w)IF(w)12. Similarly,
Qpe SW)IFCw)I. Similarly, .

the filtered noise spectra are N1 (w)IFG&)2 and N2 (w)IF(w)I *

Thus Equation 4.25 is readily modified to account for the

filtering. Equation 4.25 becomes
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) 27r fB W2IFI 4[N + S(N + N2) dw

var D = T f . =21F12S dw )2

rT d+j S2 /NN 2  (4.26)

If the filter 1F1 2 is defined by

S/N~i21 N2 2
F+)S= (4.27)

Equation 4.26 becomes an equality. The measurement

variance is now the Cramer-Rao bound. Thus, although

efficient estimates were shown in Chapter II not to exist

for this case, none the less, a correlator system with

filters determined by Equation 4.27 provides an asymptotically

efficient delay estimate.

For the M > 2 case, there are M(M-1)/2 sensor pairs

to be correlated. Let ei, be the error in the delay
estimate based on the correlation,

S(T f xiFtxjF(t-Tj) dt , (4.28)

where xiF(t) and x F(t) are the filtered xi(t) and x (t)

processes, respectively. From Equation 4.24

eeA 27r = B wI±ijIFkl2G(iJ;kl) dw
<eijkl > T f w21Fijl2 S dw f W 2IFkll2S dwk4.9

B B
(4.29)1
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where

G(iJ;kl) = [(S+Nisik)(S+Njl) - (S+Niail)(S+NJ6jk)]

(4.30)

In Equation 4.29, IFij( )I is the filter used on the x.

and x waveforms, which are the inputs to the correlator

that computes zi (Ta).

Let the M(M-1)/2 errors be displayed as a column

vector e, and let Pe be the covariance matrix for the errors:

e
~e= < eeT > .(14.31) ••

The main diagonal terms of Pe are the individual

variances of the M(M-1)/2 delay measurements from the

M(M-1)/2 correlators. From the discussion pertaining to

Equation 4.26, the filters

IFj2 S/NiNj(132

IFiJI = s 32)

will minimize the main diagonal terms of Pe. It is

tempting to conclude that these filters will then be

the optimal filters. But this is not true in view of what

follows. K
For the problem being considered, a vector (of delays)

is to be optimally estimated. The observations (from the

correlators) are a linear combinat'.on of the delays

to be estimated, corrupted by additive zero mean noise.

Therefore, the vector to be estimated, D, is linearly

related to the observations, T, by
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T = AD + e . (4.33)

The covariance matrix for e, Pc' is given in Equation 4.31.

It is known that the optimal linear estimate for the vector

D is the Gauss-Markov estimate [9],

D = [ATPelA]-IATPlT (4.3.4)
e e

The Gauss-Markov. estimate is the minimum variance

linear unbiased estimate for estimating a vector, given

linear observations corrupted by additive zero-mean noise.

The covariance matrix for the Gauss-Markov estimate is

T T -1 -1Z < (D-D)(D-D)T> [A P•A] (4.35)

Without loss of generality, it is convenient to fix

the order of the elements, Tij, of T by -.:fining

T= (T1 2 , TI 3 , ... , T(Ml)M) • (4.36)

In addition define the following scalars, vectors, and
matrices:

eT = (ee 2 , e(Ml)M) (4.37)

F = diag (OF12 12, IF 1I2P ... , IF(M_I)-l2) (4.38)

K = f w2 SF dw
B

- diag (KI2,, K K(M_I)M) (4.39)

G = [G(ij;kl)] . (4.40)

40
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The matrix G has for its elements the terms G(ij;kl),

positioned according to the scheme determined by

the order of the subscripts in Equation 4.36. Then from

Equations 4.29, 4.31, and 4.35 through 4.40,

PB = -T K-1 f w2 FGF dw)K- , (4.41)e B

and

< (_D)(•_D)T >-I T ATK( f • 2 FGF dw)-IKA . (4.42)

2ir B

Consider the M = 3 case. The matrix G is

N1N2 + S(N+N2) SN1  -SN 2

G = SNI NIN3 + S(Nl+N3) SN 3

L -2 SN3  N2 N3 + S 2+N "

(4.43)
Let the filters be specified by

IFiIj 2 = S/NiNj 1.14IF S 2" (4.44)

k=1

Then

FGF = S dag( 1
1 , + I kk 12'423

k

S I 1 N 2 Nk3  [ -1 1

S k -1

41
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Since

(4.46)

define = (1 -1 1), so that

-P =Z -1 + bwwTJKl (4.47)
e T

where
3S3/IN2N3N

b = - 2 1N 2  . (4.48)

B z+ I S 2

k
k

By the matrix inverse lemma [7)

-1pe T wwT

e 2"-[K 1 +- TKw (4.49)

T i[dK T (4.50)

27r d,

withV

d = + wTKw (4.51)

It is now necessary to specify the vector D and the

matrix A. Let D be defined as

D = D - D (4.52)

so that

A - . (4.53) I
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Then

"< (D-D, D-D) >-= ATPeA

FdKl2-1 1

T AT 3-i A

-:j - -i 1  dK23-1]

Sd(KI 2+K1 3 )

1dK3  d(K. X23  (4.54)

For the specific choice of filters,

K, f 2 S2 1/NJ (4,55)

kk

The FIM matrix for M = 3 with the same choice of

delay vector to be estimated was given in Equations 2.47

and 2.48. Those Equations are the same as Equations 4.54

and 4.55. That is, the Gauss-Markov estimate obtained

from the three correlator processing scheme, with the

inputs to the correlators filtered according to

Equation 4.44, achieves the CRMB.

Thus, for M = 2 and M = 3, the correlator processing

scheme can provide the best possible estimate, if the

proper filters are used.

43
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It is conjectured that the optimun filters to use

with the correlator delay measurement scheme are defined

for all M by

Fij12 = (4.56)

sA

+ ,

kF

Nt
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CHAPTER V

SUBOPTIMAL FILTERING

In the preceding chapters optimum filtering schemes

for correlator delay measurement systems were discussed.

An interesting question is how sensitive are the measure-

ment errors to changes in the filter design from the opti-

mum. These design changes may be deliberate or inadvertant.

An instance of the former is when the prior knowledge of

the signal spectrum is limited. In such a case the

designer may choose to design for an assumed worst case.

Or perhaps he may choose to simply whiten the input noise

Or perhaps the correlator system is also to be used for

detection. The designer uay choose to use the Eckart

filters, since they are the optimal filters for correlator

detectors [10).

In this chapter, the degradation in the correlator

estimator performance is studied for M = 2. It is assumed

that both noises have the same spectrum. The signal and

noise spectra, S(w) and N(.), respectively, are both taken

to be bandlimited with constant slopes of 0, -3, or -6

dB/octave.

2A (w/wl-a I < W/WI < + W

S(W)

[0 , elsewhere. (5.1)
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2B ( -I).-b2B Ww 1 < W/WI 1 + W

0 , elsewhere . (5.2)

In Equations 5.1 and 5.2 S(w) and N(w) are the one

sided spectra. W is a bandwidth variable. For W = 1, 3,

7, and 15, the bandwidths of the spectra are 1, 2, 3, and

14 octaves, respectively. The spectrum slope is determined

by a and b, each of which will be equa2 to 0, 1, or 2.
The suboptimal filters will be defined by:

(1) IFNF2 = 1 (5.3)

(2) IFECKKI S/N' (5.4)

(3) IFWHI 2  1/N (5.5)

(4) IFoP2 /N2 (5.6
10PTI 1 +/ 2 56

FECK is the Eckart filter. FWH is the filter that whitens

the input noise. FOPT is the optimal filter for delay

estimation. Notice that for large SNRs (Signal to Noise

Ratios) the optimal filter essentially whitens the noise.

(The system performance is unaffected by filter gain con-

stants.) For small SNRs the optimal filter is essentially

an Eckart filter.

In what follows the system dependence on the input

SNR is studied by plotting curves for five SNRs determined

by
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A 2= k 0, 11, 2 3, 4. (57)

T ordinates of the curves will be the measurement stand-

ard deviations for the optimally filtered case, or the

dagradation in dB when suboptimul filters are used. The

variable W is used for the abscissa.

Whelchel [ll] used the spectra of (5.1) and (5.2) in

an analysis of the effects of suboptimal filtering on

correlator performance. Whelohel wa5 primarily interested I
in signal detection, and used the output SNR of the correlator

as a measure of detection capability. The study of sub- I
optimally filtered correlator estimators in this chapter

in part parallels Whelchel's study of suboptimally filtered

correlator detectors.

Denote thM measurement variances by D2 FD D 2  I
and 2 to correspond to the filters FNF, FECX, FWH, and,anDOPT',F EC 4

FOPT*

Let d = a - b. When the spectra of (5.) and (5.2)

are used with the filters defined by (5.3), (5.41), (5.5)p

and (5.6), and the estimation variance is calculated using

'4.26), the result in all cases ex-ept one depends on d,

and not specifically on a and b. Only when the filters
FWH are used does the corresponding variance depend

specifically on both a and b.

Graphs showing how the standard deviation of the

optimally filtered delay estimate depends on the parameters
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k and W are given in Figures 1, 2, and 3 for d = 0, 1, and

2, respectively. The curves are normalized by the factor

V/(w 3 T), so that /(w3 T). D Mis dimensionless. If1~ ~ TV OPT(W
for example, wI and T are chosen so that Aw3 T)= 10 3 sec- 1 ,

then the abscissas of these three figures read directly in

milliseconds. For d = 0 and d = 1 DOPT(W) can be made

arbitrarily small by letting W be sufficiently large. This

is not true for d = 2. The curves of Figure 1 also apply

to DWH and DECK" since for d = 0, S/N is simply a constant.

They also apply to DNF when the noise and signal spectra

are both flat (a = b 0 C).

The asymptotic nature of the curves for small values

of W may not truly represent the behavior of the system

measurement error. This is because the derivation leading

to (4.25) assumes a sufficiently large time-bandwidth

product to yield measurements with small errors.

Figures 4 through 7 show the processor performance

(in dB, relative to the optimal) when suboptimum filters

DWH and DECK are used. In these curves 'ýoth the optimum

and the suboptimum systems are presumed to process the same

band of frequencles, determined by the argument W. For

example, in Figure 4 the s~ytem degradation is giien by

"dB loss = 10 log 0 (Dc (W)/D pT(W)), (5.6)

for d a - b 1. As indicated by Figures 5 and 6, for the
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assumed spectra, the Eckart filtered system sutstains

a processing loss relative to the optimum of at mosL about

0.5 dB. The processing loss decreases as the input SNR

decreases, as expected.

Figures 8 and 9 depict the system performance if only

flat band-pass filters, FNF, are used. For these figures

d 2, with a = 2 and b = 0 in Figure 8, and a = 3 and

b = 1 in Figure 9. In these figures the rystem degradation

is measured relative to the infinite bandwidth (W =

optimally filtered system. Thus the

dB loss = 10 log1 0 (D F(W)/DoPT()) (5.9)

in Figures 8 and 9. Note that Figure 8 also gives the dB

2 2loss of DWH(W) relative to DOPT(•) for d = 2. This is

because b = 0 in Figure 8, and the noise is flat. In both i
figures the processing loss at first decreases to a minimum,

and then as too much high frequency noise is prccessed the

variance then increases. Since the signal spectrum is fall- 40

ing off at 6 dB/octave faster than the noise spectrum, the

processor will behave ever more poorly as the processor
bandwidth is made larger and larger. It is interesting

that a W of 3 or 4 corresponding to about a two octave

processing band yields a loss of only 3 or 4 dB.

49I
k 49

.- ~---- _________________



NOLTR 72-120

I0

0I

7:

in

C4

50-



NOLTR 72-120

it 8

V0

0 0

0

0 V I'

• i i

•!R

ad
z

4 I z
C4

I-

OD C4

(M)Id 0Ujt' - -

51



'2 -Zi

NOLTR 72-1120

('C4
11

us

0

522

-49ýýt~h -



W ~ -

NOLTR 72-1 20

0
C4

0

C UJ

C,))

U)

03
IIM)dZOM 0c)V l0

53Z



NOLTR 72-120

IM

tc) C4I
-~ .9

II4

00

CC4

I.-

tn

54I



N-1

NOLTR 72-120

ins

00

-'-4

0 us

2o

C; it

04
II;

0 .M 0
CS VcoC

C; C0
G-O I ((M)do GM)H0

55I~



NOLTR 72-120

C4.

An z

z

N 4

C, 14

o4 coC

(m) d~zoW Hma) vl N

56



NOLTR 72-120

I'8

ITi

C4 00 C

((-)JdOO(M) JZG) OI 0

572



NOLTR 72-120

0

04

IIuii

rM- zz

4-0G/M -N 0 10

58~I



-ONN
NOLTR 72-120

APPENDIX A

THE CRAMER-RAO MATRIX BOUND I
The Cram~r-Rao matrix bound (CRMB) is the generaliza-

tion to the vector estimation case of the scalar Cram~r-Rao

bound. The CRMB is useful for the same reason that the

scalar bound is useful--it is a bound for all estimators.

and can be calculated from a knowledge of only the

probability density function without specifying an

estimator. It is easily derived, as follows: K
If u, v, and w are vectors, and H is a matrix, and

if only v and w are random, consider the quadratic form -

0 < uT(v-Hw) (v-Hw)Tu

= uT(vvT+HwwTHT-2HwvT )u. (A.1)

Assume < wwT >-I exists, and let

H=<vT T -
H = < vv > < ww > . (A.2)

Take the expectation of both sides of (A.1) and use (A.2).

The result is the quadratic form

0<u ( <vv > < vw >< ww>-I < wv >)u.

(A.3)

iT-i% I-_4
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(A.3) shows that the t.atrix in the quadratic form

of (A.3) is nonnegative definite, since u is an arbitrary

vector. Thns

< vvT > > < vwT > < wwT ;" < wvT > .(A.4)

If f is a scalar function of the vector y, let the

gradient of f with respect to y be written as a row vector

grad f= (af af ff

y ... ,% a,(Ay5)

If g is a column vector, let grad g be that matrix

in which the i-th row is the gradient (with respect to y)

of the i-th component of g.

gradgrad g

grad gn (A.6) I
Consider a nonrandom vector estimid-ion pr3blem. The

parameter vector to be estimated, y, and the vector of

observations, x, are the arguments of the probability

density function p(xly). Let Y(= y(x)) be an estimate for

y 'iased on the observation vector x. With the gradients

taken with respect to the components of y,
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grad < y > grad f y p(xly) dx

f y grad p(xly) dx

f y(grad in p(xly)) p(xly) dx

< y grad in p(xly) >. (A.7)

Also,

< y grad in p(xly) > = f y grad p(xly) dx

= y grad f P(xly) dx

=o . (A.8)

From (A.7) and (A.8),

grad < y > = < (y-y) grad in p(xly) > . (A.9)

teIf the estimate y has the bias b, that is, < > = y + b,

then

grad < y > = I+ grad b . (A.10)

In (A.4) let v = &-y) and wT = grad in p(xiy). Then

< vw = I + grad b, in view of (A.10), and (A.4) becomes

T
< (y-y)(y-y) > > (L + grad b)

< (grad in p(xly))T(grad In p(xly)) >-i

(I + grad b)T . (A.11)
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This is known as the Cramdr-Rao Matrix Bound (CRMB).

The matrix

(FIM) = < (grad in p(xly))T(grad in p(xly)) >

(A.12)

is called the Fisher Information Matrix (FIM).

A relevant question is whether it is possi' > to

achieve eý,uality in (A.11). This is possible only if

there is equality in (A.1), which occurs only if v = Hw.

Note that H as defined in (A.2) is not random, that is, it

is not a matrix function o2 the data. H is at most a

matrix function of y. Assume H' exists. Then equality in

(A.11) is possible if and only if

grad in p(xly) = H-l(y)(y(x)-y) . (A.13)

That is. grad in p(xly) can be factored into a matrix

product, where H (y) is a matrix that does zxot depend on

S~ the data.

The development above is patterneQ after Balakrishnan

[12].

An alternate form of the FIM is often more convenient

to use than the right side of (A.13). It is derived as

follows:
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f p(Xly) dx =0 .(A.l14)

grad fp(xly) dx =fgrad p(xjy) dx

=f (grad in p(xly)) p(xly) dx

0. (A.15)

grad F(grad in p(xjy))T p(xjy) dx

gra[(radinp(xjy))T p(xly)J dx

=f[grad(grad in p(xly))T p(xly) dx

f(grad in p(xly)) (grad in p(xIy)) p(xIy) dx

0 (A.16)

That grad p(xjy) =(grad in p(xly)) p(xiy) was used in

~ I(A.16). From the 'Last equality in (A.16) it follows that

(FIM) -f grad(grad in p(xly))T p(x~y) dx

-- < grad(grad in p(xly))T > (A.L7)

which is the alternate form of the FIM.

"A"
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APPENDIX B

COMPLEX GAUSSIAN RANDOM VARIABLES

Let x and y be real Gaussian random n-vectors, with

means R and Y, respectively. The Joint probability density

function for x and y is

p(x,y) = (2,)-n (det P)- 1 / 2 exp { - ]j
S21 1yy 1L--yj

(B.1)

where

P < y- > = V y jx .y (B.2)

Let tne complex random vector z E x + Jy, where the
real and imaginary parts are distributed according to (B.1).

Under certain practical and important conditions the joint

density function can be written as a function of the complex

random vector z, rather than as a function of both x and y,

This is desirable in that expectations of functions of z,

and also investigations of the properties of the likelihood

function, become much more tractable.

It is convenient to state certain matrix results.

Consider matrices of the form R V -W ana C = V + JW,

where V and W are real square n x n matrices. Then the

following statements are true:

-I
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1. Matrices of the form R and C are isomorphic under matrix

addition and matrix multiplication.

A 2. R is symmetric <=O C is Hermitian (C = CT)

V = VT and W = _WT.

3 C-1 A + JB exists < R-1 A -B exists.B A

4. R is orthogonal (RT = R- 1) < C is unitary (C-1 = C)*

S5. R is symmetric positive definite <=> C is Hermitian

positive definite.

6. If V = VT and W = -WT, if x and y are n vectors, and if

z = x + Jy, then

(x T v W ] zTz

and

(xT y T) [V -W1' [xj zTC-lz*. (B.4~)
I vT

7. If V =VT and W =-WT, then

det R = (det 0)2 (B.5)

Statements 1 through 6 are easy to verify. Only

statement 7 requires some justification. In Mathews and

Walker [13, pt 155) it is shown that a ccmplex matrix C.

can be diagonalized by a unitary matrix T if and only if

C and C commute (c•Tc = ccfT) If C is Hermitian (C = C*T)

then C and C*T obviously conmmute. Let T be the unitary

trans-formatlon that diagonalizes the Hermitian matrix C.

Then T-ICT D, where D is a diagonal matrix. Since det T =
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(det T-I)-I, det C = det D. Let T, C, and D be the matrices

isomorphic to T, C, and D, respectively. Then D = (T) CT,

so that det D = det C. But C = R, and D = , so that

det D = (det D)2 . Thus det R = (det C)2 .

Thus, if z = x + jy, where x and y are Gaussian n-

vectors distributed by (B.1), and if

S[V V] (B.5)

where V = VT and W = -WT, then using (B.4) and (B.5) the

density function (B.1) can be written as

p(z) = 7-n (det C)- exp{-(z-z)T C- (z-E)} (r.6)

where C V + JW and • = i + Jy. The complex vector

argument of (B.6) is called a complex Gaussian random

vector. IN

Complex Gaussian random vectors and their properties

have been extensively studied by Goodman [4]. In [4]

Goodman develops, among other things, results pertaining

to characteristic functions, maximum likelihood estimation

of C, and distribution functions for the maximum likelihood

estimates.

Whether or not the complex random variables are

distributed by (B.6), the relation
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< Zlz23z >3=4 < ZlZ2 >< z3z4 > + <zlz3 > < z2z4 >

+ < Zl > < zz >

-2 < z > < z > z 3 < < > (B.7)

holds if the real and imaginary parts of the complex

random variables in (B.7) are Gaussian random variables.

67I
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